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NOTICES

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.
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INTRODUCTION

The Army has a continuing need for lasers in field systems such as range
finders and target designators. Since gases and particulates in the
atmosphere will affect the performance of any laser system, their effects
must be well understood before a total system analysis can be completed.
For a complete understanding of laser propagation characteristics, the
spectral nature of the laser energy must be known in addition to the
absorption properties of the atmosphere. Previous atmospheric propaga-
tion studies for various solid-state lasers were hindered by 1limited
spectrometer resolution [1]. To investigate the interaction of laser
energy with atmospheric gas absorption lines, a new high-resolution
measuring technique was developed. The system allows relative wave-
length identification of the individual laser spikes in a long-pulse
laser output.

The emission from a long-pulse solid-state laser consists of a series

of spikes. If the laser is homogeneously broadened, or nearly so, and
care is taken in the alignment [2], the spikes will consist of only one
longi tudinal mode. These spikes can be used for high-resolution gas
absorption studies if a method of wavelength identification can be found,
since the spikes do not occur in any predictable way within the gain
envelope of the laser and vary in spectral position from shot to shot.
Methods have been developed to identify wavelengths by using spectrom-
eters [3]; however, the ultimate spectrometer resolution available (about
102 nm) is far from sufficient to allow accurate sorting of single mode
laser spikes for high-resolution studies.

The new idea is simply to measure the transmission of a laser spike
through a known absorber in which the absorption is a monotonic function
of wavelength. The relative wavelength of the laser spike can be obtained
from this measurement. One method of measuring is by positioning one

side of a Tow finesse Fabry-Perot etalon bandpass such that it is coin-
cident with the laser output spectrum. Different wavelength laser spikes
experience different attenuations on passing through the etalon. Thus, a
relative wavelength tag can be associated with the etalon transmission
value of a given laser spike.

An investigation to study the atmospheric propagation characteristics of
the erbium:ytterbium-aluminum-garnet (YAG) laser energy was the impetus
for the development of the above technique. Carbon dioxide and water
vapor are the principal infrared absorbers [4], but neither has a major
absorption band in the spectral region of the 1.645um laser emission.
However, there are several minor absorption bands and many weak lines
[5] which impart a considerable amount of spectral structure to this
region. A close wavelength coincidence had been previously discovered
[1] between the erbium:YAG Taser radiation and the R(6) line in the 2v;
methane band at 1645.1 nm. The potential application of this coinci-
dence to the remote sensing of atmospheric methane has been discussed
elsewhere [6]. Theory predicts that this overtone line is composed of




six fine structure compacts [7,8], two groups of three separated by
0.22 nm [8,9]. The relative spectral positions of the methane absorp-
tion 1ine, erbium:YAG laser emission, and etalon transmission are shown
in Fig. 1. The new measuring technique was developed in an attempt to
resolve this absorption interaction.

The experimental arrangement, including properties of the laser, etalon,
and data acquisition system, and experimental results are presented in
the following sections.

EXPERIMENTAL ARRANGEMENT

The experimental arrangement is illustrated in Fig. 2. The optical
system consists of: (1) a reference amplitude detector, (2) the
absorption cell and output detector, (3) the spike wavelength identify-
ing mechanism (Fabry-Perot etalon and detector), and (4) a wavelength
region identifying instrument (5-m spectrometer). The data acquisition
system consists of three analog-to-digital converters (ADC), an ADC data
identifier (ADI), an interactive terminal, and an HP 2100A minicomputer.

Laser Parameters

The laser consists of a 6 mm diameter by 75 mm Tong YAG rod doped with
0.4% erbium and sensitized with 5% ytterbium [10,11]. A linear xenon
flash Tamp is used in a close-wrap intersecting circle cavity which is
cooled by flowing nitrogen gas. The laser interferometer consists of a
plane parallel cavity with a 99.9% reflectivity back mirror and a 95%
reflectivity output mirror 26.5 cm apart (the rod ends being antireflec-
tion coated). The laser cavity and the optical system are aligned by
using a He-Ne Taser beam coincident with the erbium Taser beam. A nicol
prism is placed at the laser output to obtain a vertically polarized
beam. With this configuration the threshold is approximately 200 joules.
The nominal output slightly above threshold is 10-30 millijoules per
pulse in the long pulse mode of operation. Laser emission is centered
at 1644.9 nm with a spectral bandwidth of approximately 0.6 nm.

In this laser the initial depopulation of the excited state is so large
that lasing ceases until the population inversion can be restored by
continued pumping--at which point the process repeats itself (Fig. 3).
This procedure results in a long pulse mode output consisting of a 0.5

to 4 millisecond train of single-mode (frequency) spikes. Near threshold
the spikes occur singly with respect to time. This behavior was enhanced
by placing two 1 mm diameter apertures in the laser cavity and thereby
raducing the usable gain medium volume. The above temporal behavior is

a necessary condition for the data acquisition system to be able to
analyze the individual spike peak intensities. The data analysis system
automatically rejects spikes in very rapid succession and any spike
overlapping due to detector decay time (Fig. 3).
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Since the measuring system uses the absorption values for individual
laser spikes, the system's resolving power is inherently a function of
the spectral width of each spike. The erbium laser approaches being

- homogeneously broadened. In a homogeneously broadened system, there may
be several cavity modes which have gains above threshold (Fig. 4a) at
the start of laser action. As energy builds up at these frequencies,
the modes compete with each other for the inverted population, and the
total gain drops (gain saturation) [12], until only one mode is left
above the threshold gain (Fig. 4b). The output thus ideally consists

of a single frequency corresponding to the mode with the highest initial
gain. If only one longitudinal mode was to oscillate, the bandwidth of
a single spike should be extremely narrow (< 0.0001 nm, based on theoreti-
cal laser interferometer finesse).

Even though the erbium laser is not an ideal homogenously broadened
system, operation with single frequency spikes may be enhanced by align-
ing the cavity mirrors parallel to the ends of the laser rod [2]. This
provides an intracavity mode-selecting resonator with a high effective
finesse, since it contains the laser's gain medium. An upper limit for
the spectral width of an individual spike was experimentally set at less
than 0.01 nm [13] by using a 5 m grating spectroineter with a linear fiber
opt;c bgnd]e in its output plane ?the maximum spectrometer resolution was
1074 nm).

Wavelength Identifier

A Fabry-Perot etalon with plane parallel mirrors is used to identify the
wavelength of the individual spikes with respect to each other. An
etalon bandpass is positioned as in Fig. 5 by changing mirror spacing.
For this positioning, shorter wavelength spikes (A ) give rise to lower
etalon transmission values (T ) than longer wavelength spikes (an, Tn).
Therefore, by plotting the gaseous transmission values for the spikes
versus etalon transmission values, a profile of the absorption-1line can
be obtained.

By using a computer model [14] of the transmission characteristics of
the etalon, the necessary mirror reflectivities and spacing were obtained
for the wavelength region of interest. The objective was to obtain a
bandpass which was linear over the desired spectral range (absorption
1ine§ while possessing the maximum dynamic range of transmission. For
this case, 40% reflectivity mirrors with approximately 0.5 mm spacing
gave these desired characteristics. The etalon has a finesse of 3.31,
with a free spectral range of 2.7 nm and bandpass full-width at half
maximum of 0.82 nm. For studying specific sections of a highly struc-
tured absorption line, a narrower bandpass with an increased transmission
versus wavelength slope might be used.

The measuring system's resolving ability is highly dependent on the
resolution and stability of the etalon. About 0.1 nm of the etalon
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bandpass (in the linear region) is used in the measurement. The detector
signals obtained from the laser spikes in this spectral region can be
made to range over a 10-V region which in turn is digitized by using 2048
channel resolution. Thus, a theoretical spectral resolution of about

5 x 105 nm is obtainable. This is on the order of the width of the
single mode laser spikes. A 3 mm diameter aperture is used to limit the
etalon mirror surface area used so that the spikes encounter minimal
differences in mirror reflectivity and spacing; this procedure helps to
ensure a linear and uniform bandpass for all spikes.

The etalon is Invar housed with piezoelectric electromicrometers for
both mirror alignment and spacing. The construction minimizes thermal
and mechanical stability problems [15]. Thermal shifts were seen to be
minimal due to the Invar construction and thermal expansive compensation
i (one component expands in a direction opposite to another). A 61 nm
! change of the 0.5 mm etalon mirror spacing will cause a theoretical
change of 20% in the transmission of a particular wavelength through the
etalon. This shift would not be of any consequence if all the necessary
data points could be accumulated within one long pulse since the mechan-
ical vibration noise has a period longer than the 4 ms laser shot (the
system is mounted on a massive optical table). For the methane absorp-
i tion line under- consideration, the laser is just partially coincident,
. so only a few of the spikes in a long pulse fall on the line. Therefore,
§ more than one shot is needed to obtain a sufficient amount of data. Any
] etalon mirror spacing shift between laser shots woulid result in a corre-
zgonding offset in wavelength positions between the different sets of
ta.

Other Systems

A 5 m Fastie spectrometer is used to select portions of the laser spectral
output for analysis (Fig. 5). The signal from a detector behind the
spectrometer slit (Fig. 2) acts as a "gate" for the data acquisition
system, allowing only those laser spikes with wavelengths within the
spectrometer slit to be analyzed. This is used to observe etalon trans-
mission values for positioning the bandpass and to analyze the absorption
characteristics of specific wavelength regions. The computer/ADI sorts
data in up to four separate memory sections depending on the coincident
"gate" signal from different spectral positions in the output plane of
the spectrometer [16]. This allows real-time system calibration to com-
pensate for long-term changes.

SEPUTRE S S

Detector arrangement is shown in Fig. 6. Originally some problems were
] encountered with spikes hitting different parts of the active area of
the photodiode and causing erratic results. A membrane filter was
incorporated into the arrangement to diffuse the laser spike energy
such that it is averaged over the entire active area.
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The absorption cell (Fig. 2) is constructed from 7.5 cm diameter Pyrex
tubing 0.62 m long with antireflection coated entrance and exit windows.
The absorption path coasists of a single pass through 100 torr of CHy,

broadened with 560 torr of N,. The cell temperature was maintained at
22°C and the pressures were monitored by a capacitance nanometer.

Data Analysis System

A minicomputer controlled pulse-height analyzer is used to store, analyze,
and display the information from the three simultaneous signals: (1)
reference (cell input), (2) absorption (cell output), and (3) etalon
(etalon output). This basic data acquisition and analysis system has
been described in detail elsewhere [17]. The peak amplitude of the
signals from the reference, absorptions, and etalon detectors are sampled
and digitized into corresponding 14-bit digital words (up to 8192
channels) by the three ADCs. These words are held in a buffer until

the minicomputer signals that it is ready for data transfer. An addi-
tional two bits are added to the etalon ADC word via the ADI unit. This
enables data to be routed into up to four different memory locations

when some identifying coincidence signal is present on one of the four
ADI inputs at the same time data is present. The three ADCs are run in
coincidence mode, which means that they can only accept data when a
coincidence pulse is present (e.g., spectrometer gating), thereby insuring
correlation between the three signals for an individual spike.

Data transfer to mewory is accomplished through the use of two direct-
memory access (DMA) channels for the reference and absorption digital
words and one microprogrammed channel for the etalon. To maintain the
correlation between the three ADCs, the reference and absorption ADCs
are hardwire "slaved" to the etalon ADC.

The three digital heights for a spike are transferred to the minicomputer
only when the etalon ADC signals that it has data to transfer.. Also,

no ADC can accept new data until the microprogrammed (etalon) channel

has finished data transfer. This is necessary since the DMA channels
operate basically independent from the minicomputer's central processor
unit (CPU), while the microprogramming requires seven CPU cycles or
6.86us to transfer data. This and the minimum time between successive
laser spikes determines the minimum usable ADC pulse height resolution.
Once the three simultaneous ADC words for all spikes in a long pulse

are in memory, computations can be initiated.

The ratio of the absorption cell signal to reference signal allows the
transmittance of each spike through the gas to be calculated. The etalon
signal to reference signal is the etalon transmittance and is used to.
identify laser spike wavelengths with respect to each other. Plotting
the absorption cell transmission values versus the etalon transmission
gives a visual display of any absorption feature. Scale magnification
is possible with the computer system, allowing closer scrutiny of highly
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structured sections. The data from several different laser shots can be
plotted together or separately.

With this system, approximately 40 data points can be obtained within
less than 4 ms, the time duration of one long-pulse laser shot. This
insures minimal influence on system calibration by time-varying problems.

EXPERIMENTAL RESULTS AND COMMENTS

Positioning of the etalon bandpass is especially critical. To achieve
correct positioning the spectrometer is used to "gate" the system for a
specific wavelength range, while the etalon spacing crystal is scanned.

A typical plot of this type of data is illustrated in Fig. 7 for spikes
not coincident with the absorption line. As the etalon is scanned, the
transmission range for a set wavelength increment (spectrometer slit
width) changes. On the peak of the bandpass (Fig. 7a), dynamic trans-
mission range is minimal while transmission is greatest. As the side

of the bandpass is scanned, the total range of etalon transmission values
increases and maximum dynamic range position is obtained (Fig. 7b). This
is the desired position. Further scanning positions the wing region of
the etalon bandpass on top of the wavelength range, again giving minimal
dynamic range, but this time with minimum transmission.

Figure 8 is a sequence of data taken with different spectrometer slit
positions after the etalon bandpass has been positioned on the absorption
line as in Fig. 1. In Fig. 8a the spectrometer slit is located off of
the absorption line. As the slit is moved, more of the absorption line
can be seen (Figs. 8b and 8c). The total line could not be scanned since
the erbium:YAG laser output did not span the entire absorption line.
Other coincident absorption lines may be investigated in the future.

Use of this system is not limited to obtaining spectral profiles of
coincident gas absorption lines. The system may be used in any long-
pulse laser interaction study. Three ADCs were utilized in this system,
but many more microprogrammed transfer channels may be added with a small
increase in data acquisition time (10us per ADC). The main resolution
limitations in this system are the etalon stability and the timing
requirements which determine the maximum usable number of ADC pulse
height channels.
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